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Abstract

An improved numerical method to exactly evaluate the dynamic element stiffness matrix is proposed for
the spatially coupled free vibration analysis of non-symmetric thin-walled curved beams subjected to
uniform axial force. For this purpose, firstly equations of motion, boundary conditions and
force—deformation relations are rigorously derived from the total potential energy for a curved beam
element. Next systems of linear algebraic equations with non-symmetric matrices are constructed by
introducing 14 displacement parameters and transforming the fourth-order simultaneous differential
equations into the first-order simultaneous equations. And then explicit expressions for displacement
parameters are numerically evaluated via eigensolutions and the exact 14 x 14 element stiffness matrix is
determined using force—deformation relations. In order to demonstrate the validity and the accuracy of this
study, the spatially coupled natural frequencies of non-symmetric thin-walled curved beams subjected to
uniform compressive and tensile forces are evaluated and compared with analytical and finite element
solutions using Hermitian curved beam elements or ABAQUS’s shell element. In addition, some results by
the parametric study are reported.
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1. Introduction

Thin-walled curved beam structures have been used in many civil, mechanical, and aerospace
engineering applications such as curved wire, curved girder bridges, turbomachinery blade, tire
dynamic, and stiffeners in aircraft structures. It can also be used as a simplified model of a shell
structure. The vibrational behavior of non-symmetric thin-walled curved beam structures is very
complex due to the coupling effect of extensional, bending, and torsional deformation. Due to this
reason, it is not easy to evaluate exactly the natural frequencies of the spatially coupled thin-
walled curved beam with non-symmetric cross-section.

Up to the present, the study for the free in-plane vibration [1-23] of curved beam have been
done by considering various parameters such as boundary conditions, shear deformation, rotary
inertia, variable curvatures and variable cross-sections. Particularly considerable research [1-8]
was reported on the exact solutions for free in-plane vibration of curved beam. Nieh et al. [1]
developed an analytical solution for the free vibration and stability of elliptic arches subjected to a
uniformly distributed vertical static loading by incorporating series solutions and stiffness
matrices. Eisenberger and Efraim [2] presented the exact dynamic stiffness matrix for a circular
beam with a uniform cross-section. The matrix is derived from the differential equation of motion
for a beam. This stiffness matrix is free of membrane and shear locking as the shape functions that
are used are the exact solution of the differential equations of motion. Howson and Jemah [3]
evaluated the planar natural frequency of curved Timoshenko beams with uniform cross-section
and arbitrary boundary conditions. This is achieved by using exact dynamic stiffness matrix and
by utilizing a new version of the Wittrick—Williams algorithm [24] which determines the number
of natural frequencies exceeded by any trial frequency. Huang et al. [4] and Tseng et al. [5]
provided the systematic approach to solve the in-plane vibrations of arches with variable cross-
section and constant cross-section, respectively, using the Frobenius method [25] combined with
the dynamic stiffness method. Gupta and Howson [6] presented a method for converging with
certainty upon any required natural frequency of a plane slender curved beam. They used the
exact member theory in conjunction with the dynamic stiffness technique and this necessitated
the solution of a transcendental eigenvalue problem. Solutions were achieved by use
of the Wittrick—Williams algorithm. Issa et al. [7] presented a unified theory which includes the
effects of transverse shear and rotary inertia as well as the extensional effect of the neutral axis
and derived the dynamic stiffness matrix for a circular curved beam in terms of rotational and
translational displacements. Wang and Guilbert [8] derived the dynamic stiffness matrix
formulation for circular curved beams of constant cross-section, including the effects of rotary
inertia and shear deformation, for determination of the natural frequencies of continuous two-
span curved beams.

On the other hand, the research for the free out-of-plane vibration of curved beam has been
performed by several authors [26-36]. Lee and Chao [26] derived the governing differential
equations for the out-of-plane vibrations of a curved non-uniform beam of constant radius via
Hamilton’s principle. With the explicit relations between the torsional displacement, its derivative
and the flexural displacement, the two coupled governing characteristic differential equations are
reduced to one sixth-order ordinary differential equation with variable coefficients in the out-of-
plane flexural displacement. Huang et al. [27,28] developed the dynamic stiffness matrix for non-
circular curved beams from a series of solution using the Frobenius method, with which an exact
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solution of the out-of-plane free vibration of this type of beam was derived. Howson and Jemah
[29] and Howson et al. [30] evaluated the required natural frequencies of out-of-plane motion of
plane structures composed of Timoshenko and slender curved beams, respectively. The solution
of the inherent transcendental eigenvalue problem was achieved through a variation on the
Wittric—Williams algorithm. Kang et al. [31] computed the eigenvalues of free vibration of
horizontally curved beams with doubly symmetric cross-section using the differential quadrature
method (DQM).

Yildrim [37] numerically treated both in-plane and out-of-plane free vibrations of circular arch
with doubly symmetrical cross-sections, considering the effects of shear and axial deformation
and rotary inertia, with the help of the transfer matrix method. Kang et al. [38] applied the DQM
to the computation of the eigenvalues of the equations of motion governing the free in-plane
vibration including the extensibility of the arch axis with the effects of rotary inertia but neglecting
shear deformation and the coupled out-of-plane twist-bending vibration of circular arches. Also
they [39] obtained the fundamental frequency for the in-plane and out-of-plane vibration of
rectangular and circular arches based on the Timoshenko beam theory using the DQM.
Kawakami et al. [40] proposed an approximate method for analyzing the free in-plane and out-of-
plane vibration of horizontally curved beams with arbitrary shapes and variable cross-sections.
This method was based on a combination of numerical integration and numerical solution of
integral equations.

Even though a significant amount of research has been conducted on development of exact
solutions for in-plane and out-of-plane free vibration analysis of curved beam structures, to the
author’s knowledge, there was no study reported on the exact solutions for the spatially coupled
free vibration of thin-walled curved beams with non-symmetric cross-section in the literature.
Recently Kim et al. [41] presented an improved energy formulation for spatially coupled free
vibration of thin-walled curved beams with non-symmetric cross-section neglecting shear
deformation but considering rotary inertia and thickness-curvature effects. They derived only
an analytical solutions for free in-plane and out-of-plane vibrations of curved beams with mono-
symmetric cross-section which is symmetric for the plane of curvature. Furthermore, Kim et al.
[42] proposed a new method evaluating the exact dynamic element stiffness matrix of thin-walled
straight beams.

The primary aim of this study is to derive governing equations of harmonically vibrating non-
symmetric thin-walled curved beams under initial axial force which constitute 4 simultaneous
ordinary differential equations and to evaluate the exact dynamic element stiffness matrix of those
curved beams based on the previous research [41,42]. For this purpose, equations of motion and
force—deformation relations are first derived for a curved beam element. Next, the fourth-order
simultaneous differential equations are transformed into a set of the first-order simultaneous
ordinary differential equations by introducing 14 displacement parameters so that a generalized
linear eigenvalue problem is obtained with non-symmetric matrices. And then using the solutions
of the eigenproblem allowing the complex eigenvalues and eigenvectors, displacement functions of
14 displacement parameters are exactly derived with respect to nodal displacements. Finally,
nodal forces are exactly evaluated using member force—deformation relationships and 14 x 14
dynamic element stiffness matrix of curved beams is determined.

In order to demonstrate the validity and the accuracy of this study, the spatially coupled natural
frequencies are evaluated and compared with analytical solutions and the results by analysis using
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the Hermitian curved beam elements [41] and ABAQUS’s shell elements [43]. In addition, some
results by the parametric study is reported.

2. Equations of motion for thin-walled curved beams

Fig. 1 shows the global coordinates of the non-symmetric thin-walled curved beam and Fig.
2(a) and (b) show displacement parameters and stress resultants of thin-walled curved beams,
respectively. The x;-axis coincides with the centroid axis and x;, x3-axis not necessarily principal
axes. e, ey are components of the position vector of the shear center in the local coordinate.
Uy, U,, U. and o(= 0), m,, w3 are rigid-body translations and rotations with respect to xy, x2, X3
axes, respectively, and f is a parameter defining warping. Stress resultants in Fig. 2(b) are defined
by

F =/T11dA, F2=/T12d1‘1, F3=/T13d14, M1=/(T13X2—112X3)d14
A 4 4 A

M2=/r”x3dA, M3=—/111X2d1‘1, M¢=/T11¢d1‘1, (1
y y y

Xo R

Fig. 1. A curvilinear coordinate system for non-symmetric thin-walled curved beams.
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Fig. 2. Notation for displacement parameters and stress resultants. (a) Displacement parameters, (b) stress resultants.
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where Fi, F, and F3 = the axial, shear forces acting at the centroid, M, M, and M; = the total
twist moment with respect to the centroid axis, bending moments with respect to x; and x3 axes,
respectively. M and My = restrained torsional moment and the bimoment, respectively. It
should be noticed that all stress resultants are defined with respect to the centroid.

The elastic strain energy including the effect of an initial axial force and the kinetic energy of
thin-walled non-symmetric curved beam with the thickness-curvature effect and rotary inertia
were derived in Ref. [41] and presented in Appendix A.

Now by variation of elastic strain and kinetic energies with respect to U,, U,, U. and 0,
equations of motion, boundary conditions and force—deformation relations for thin-walled curved
beam are derived and expressed in Appendix B. It is evident that the equations of motion are a set
of the fourth-order simultaneously ordinary differential equations because of coupling effects of
bending-torsional deformations and non-symmetry of the cross-section.

3. Evaluation of dynamic stiffness matrix

In the next section, the exact dynamic stiffness matrix of a thin-walled curved beams with non-
symmetric cross-section subjected to uniform compressive and tensile forces is derived.

3.1. Exact evaluation of displacement functions
In order to transform the equations of motion into a set of the first-order ordinary differential
equations, a displacement state vector composed of 14 displacement parameters is defined by
d(x) = {dy,dp,d3,dy,ds,dg, d7,ds, do, dro, dr1,dr2, d 3, dra )"
= < Ux: Uf‘p Uya U;,, U;/H U;{/, UZ» U/Z: U;/: U;//a 95 B/a 0//: 0W>T' (2)

Now based on Eq. (2), the equations of motion are transformed into the following simultaneous
ordinary differential equations of the first order with constant coefficients.

d) = ds, (3a)
2, I, 1 1 (1 . I3
—EAd/Z = {pcoz <A +F+F> - FOFl}dl — pwzﬁ {§(12¢ +I2¢>) + (T"‘ 2123) }d4
EA 1 . 1 1 .
+ {T — pw2§(12 + 1) +§0F1}d8 — szﬁ(lzqs + 1oy)d 1, (3b)
dy = dy, (3¢)
d, = ds, (3d)

ds = d, (3e)
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sl 2 N, (1. N O
El; +PE1¢ +EEI3¢ d6+ §E12¢+E123 dlo—‘r EE1¢+E13¢ dy,

1 /1. 1 1 1 1 2
—P(Dzﬁ <E12¢+§12¢ +ﬁ1223 +2123)d2+Pw2Ad3 + {PGJ—PCO (13 +R Iy +R13¢>

0 p | S | S (1= 1 1 2
F, <1 —I-P) }ds — {FEIM) +PE123 + pw <E12¢ +E1223 + I3 dog —Epa) I,d,

+ {% GJ+%E1A3 +%EIA3¢ - po? (%fqa +i3¢> +%°F1}d13, (36)
i) = d, (3g)
d, = do, (3h)
dy = d\o, (31)

1. O A .
(E Ely + E123> dg + Elyd\y+ El>gd),
1
= { EA — pw —(12+12)+ F}d
EI + EI+ i+ 1) ba LEd+ LBl 24 )d
w? — — | = — — pw
26 23T P R T RI 23 5 R I 2—Pp 7

2 | BN 1
(R ED + po*l, — 1)d9— <FEI23 +—Pw2123>d11

R
1;2E12¢ ——E123+pw 12¢>d13, (3))
dy, =d, (3k)
dy, = dis, 30
d\y = dia, (3m)

1. . R .
<EEI¢ + E13¢>d/6 + El>ydyy+ El gd,,

1 - 1 1 1.
= PCUZE([M + Ixy)dy — pwzﬁlzd3 + {EGJ+§E[3

I . Sf 1 = o Bo I . 5 1
+PE13¢,—pw <E1¢+13¢> +§ F,rds+ FEIB—F,OG) §123 d7
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1 T | 27 1 T 27 ﬂo
— (PEIM) —§E123+p60 12¢>d9 — (FEI3 — pw 10 —E Fl d11
2 . -
+ (GJ+EEI3¢—po)21¢+/30F1)d13, (3n)

which can be compactly expressed as
Ad = Bd, @)

where the detailed expressions for the matrices A and B are presented in Appendix C. In order to
find the homogeneous solution of the simultaneous differential equation (4), the following
eigenvalue problem with non-symmetric matrix is taken into account.

JAZ = BZ. Q)

In practice, the general eigenvalue problem (5) has the complex eigenvalue and the associated
eigenvector because the matrix A is symmetric but B is non-symmetric. IMSL subroutine
DGVCRG [44] is used in this study to obtain the complex eigensolutions of (5). From Eq. (5), 14
eigenvalues 4; and 14 x 14 eigenvectors Z; in complex domain can be calculated.

()“15Zl)’ l: 152’3“‘514’ (6)
where
T
Z; = < Z1i, Z2is 2305 Z4is 2505 Z6is Z7is Z8is Z9is Z10i> Z11is Z12i> Z13is Z14i ) - (7

Based on the above eigensolutions, it is possible that the general solution of Eq. (4) is
represented by the linear combination of eigenvectors with complex exponential functions as
follows:

14
dx) =) aiZie™ = X(¥)a, ®)
i=1
where
T
a = {ai,a,as,as,as,ds, as, g, ay, dio, di1, 12, A13, d14 ) (%a)

X(x) = [Zlei‘x; 76" 730" 14" 150" : Lge™; 1re™
J8X. 29X, A10X. 11X, 12X, Al13X. A14Xx
Zge™ Loe™™; Lige " Ly e Lire™ ™ Lyze™; Lyge™]. (%b)

The a is the integration constant vector and X(x) denotes the 14 x 14 matrix function made up of
14 eigensolutions.

Now it is necessary that complex coefficient vector a is represented with respect to 14 nodal
displacement components as shown in Fig. 3. For this, the following nodal displacement vector is
defined by:

U, = (U, Uyt (10a)

U* = <u“,v“,w“,wi‘,w§,w§,f°‘>T, o =p,q, (10b)
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N\ /2>3
/ AN

Fig. 3. Nodal displacement vector of a thin-walled curved beam element.

where

T
U = { U(0), U,(0), U-(0), 0(0), — <U/ - % Ux> (0), U (0), — <0/ + % U/y> (0)} , (11a)

T
U? = { U(), U,(D), U-(]),0(]), — <U’ - % Ux> D, U,(D), — (9’ + % U;) (l)} . (11b)

By substituting the coordinates of the member end (x = 0,/) into Eq. (8) and accounting for Eq.
(11), the nodal displacement vector U, is obtained as follows:
U, = Ea, (12)

where E is easily evaluated from X(x) and the detailed expression is

E =

[ z11 Z12 Z13 Z14 Z1,5 Z1,6 21,7 Z18 Z19 Z1,10 1,11 2112 Z1,13 Z114 |
Z3,1 Z32 Z33 234 Z35 23,6 23,7 38 Z39 Z3,10 Z3,11 23,12 Z3,13 Z3,14
27,1 Z72 73 274 Z75 276 277 278 279 Z7,10 Z7,11 27,12 27,13 Z7,14
2111 2112 Z11,3 Z11,4 Z11,5 Z11,6 21,7 Z11.8 2119 211,10 21,11 Z11,12 Z11,13 Z11,14
—Z8,1 —Z82  TZI83 —Z84  —TZIZ85  —TIZg6  —Z87  TZIZ88  —TZIZ89  —ZI810  —ZI8,11 —Z812  —TZ813  —ZI814
24,1 242 Z43 Z44 245 24,6 24,7 Z48 249 24,10 Z4,11 Z4,12 24,13 24,14
—Zi2,1  —Z122  —Z123  —Z124  —Z12,5  —ZI26  —Z127  TZI128  TZ129  TZI200  —ZI211  TZI212  —ZI12,13  —ZI1214

Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19 Y110 Y Y2 Y13 Y114
Va1 V32 V33 V34 Vi35 V36 V37 V3g V39 V3,10 V311 V312 V3,13 V3,14
Y71 Y12 Y13 V14 Y15 Y16 Y11 Y18 Y19 Y110 Y71 Y712 Y113 V7,14
YLl Y112 Y13 Y114 Y115 Y116 Y17 Yig Y19 Y1110 Y11 Y112 Y113 V11,14
Vg1 TVsa  TVg3  TVg4a  TVgs  TVge TVg7  TVssg  TVso g0 Vs T¥gi2 Tsi13 T4
Va1 %) Va3 Yas Yas Yae Yag Yag Yao Ya,10 Y411 Va2 Va3 V14

L—Vi2,n V22 —Vizz Ve Vs Ve Vg Vg Vi —Vizio Vi Viziz Vi3 Vizaad
(13)

where y; = zyetl, i=1,3,7,11,8,4,12; j = 1-14 and the inverse matrix of E is calculated using
IMSL subroutlne DLINCG [44].
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Finally, elimination of the complex coefficient vector a from (12) and (8) yields the displacement
state vector.

d(x) = X(x)E~'U, (14)

where X(x)E~! denotes the exact interpolation matrix.

3.2. Calculation of dynamic element stiffness matrix

Force—deformation relations of thin-walled curved beam can be rewritten with respect to 14
displacement parameters (2) as follows:

| A 1 . | 1 . | .
Fy=FEAd, +— | EI —FEly |ds+—=| EA+—EI, |d7+—=EId
1 2+R< 23+R 2¢> 5+R< -|-R2 2) 7+R 2d9
1 .. 1 .
— —EIx»d —E@yd
e 23 11+R 20413,

1 /1. 1 1
Fr = pw2§ <Elz¢ —l-ﬁlz(p +E1223 + 2123>d1

1 S
+ {PGJ—;)(&(A + s +E13¢> +°F, <1 +%> }d4
Ei+1Ef+2Ei d 1Ef+1Ef+ 2(L; +11 +1 d
J— _— —_ J— —_— —_— w —_ b —_
3 R ¢ R 3¢ |46 R 2¢ R 23T P R 2¢ R 223 23 8
| A 1 1 . 1 .
—|=EI El» |d —GJ+—=EI;+—EI
<R 20 T zs) 1o+{R +R 3+R2 3¢

1. | 5
—Pw2<ﬁl¢ +13¢> +%0F1}d12 - <EEI¢ +E13¢>d14’

1 ~ I 1
Fy= E{sz(lz + 1)) = F\}d) — po? (ﬁhd) + gl +123>d4

A | N 1 . - A
— <E[23 +EE12¢>616 — <FE[2+;)(1)212 —0F1>d8 — El,dyo

1 4 o o
+ <E El; — Pw2[2</>> dir — Elyds,

1 . 1 N 1. i
M, = po’*—( I,,)d —GJ — p* I3y +—1 Z0p ta
1 PCOR(zqs-l- 2¢)1+{R Pw<3¢+R¢>+R 1 (44
. 1. 1 . N .
- <El3¢ + EEQ,) de — (F Ely + pw2[2¢> ds — El»sdo

1 . ~ n
+ <GJ+§E[3¢ —pa)2l¢ —|—ﬂ0F1>d12 —E1¢d14,
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A | I I .- A 1 . n
M, = —<E123 +EE12¢)d5 _FEIZCh — Eldy +EE123d11 — El>yds3,

A 1 . 1 . A 1 . n
M; = <E13 +§E13¢>ds +PE1236’77 + El>3do —ﬁElsdn + El3yd3,

R | RN I . A | BN A
M(/’ = — <El3¢ + EEI(b>d5 — FE12¢d7 — Elz(pdg + EEIS(bd“ — Eld,dlg., (15a—g)
which is compactly represented as matrix form
f(x) = Sd(x), (16)

where f = (Fy, Fy, F3, M, M>, M3, M, >T and the components of 7 x 14 matrix S are expressed
in Appendix D.
Now substituting Eq. (14) into Eq. (16) leads to

f(x) = SX(x)E~'U,. (17)
Also the nodal force vector, as shown in Fig. 4 is defined by
F, = (F F/)T (18a)
F* = (F},F5,F5, M}, M5, M5, M},>", a=p,q. (18b)
Therefore, nodal forces at ends of element (x = 0,/) are evaluated using Eq. (17) as
F’ = —f(0) = —SX(0)E~'U,, (19a)
F¢ = f(1) = SX(HE'U.. (19b)

Consequently, the exact dynamic stiffness matrix K; of a spatially coupled thin-walled curved
beam element with non-symmetric cross-section is evaluated as follows:

Fe = KdUea (20)

where
K —SX(0)E~! .
4= | SXME"! e

4. Numerical examples

In order to validate and conform the accuracy of the proposed method, the spatially coupled
vibration analysis for the simply supported, fixed and cantilevered thin-walled curved beam with
non-symmetric cross-sections are conducted and numerical results by the present study are
compared with those by F. E. procedures [41], and ABAQUS’s shell element.
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Fig. 4. Nodal force vector of a thin-walled curved beam element.

4.1. Simply supported curved beams with mono-symmetric cross-sections

We consider a simply supported curved beam having the cross-section mono-symmetric with
respect to the x; axis. The geometric and material data are given in Fig. 5, in which the
length of beams / are 100 and 400 cm, respectively. The subtended angles 6, for each length of
beams are taken to be 30°and 90°, respectively. In this case, the in-plane and the out-of-plane
vibration motions are decoupled. Table 1 shows the lowest five in-plane natural frequencies by
this study with respect to the subtended angles for simply supported curved beams. For
comparison, analytical solutions [41] and the results by 20 cubic Hermitian curved beam elements
[41] are together presented. As can be seen in Table 1, the present solutions using only a single
element coincide exactly with the analytical solutions and finite element solutions. It should be
noted that the natural frequencies obtained from a single element based on the dynamic stiffness
matrix gives exact results in the higher vibrational modes as well as the lower ones while a large
number of beam eclements in FE analysis are required to achieve the sufficient accuracy in the
higher modes.

4.2. Simply supported, clamped and cantilevered beams with non-symmetric cross-sections

In this example, the spatially coupled free vibration analysis of simply supported, clamped and
cantilevered curved beams with non-symmetric cross-section subjected to uniform axial force are
performed. Fig. 6 shows the geometric and material data of curved beam with non-symmetric
cross-section. This free vibration problem of curved beam with non-symmetric cross-section
involves spatially coupled motions consisting of extension, flexure and twist. The subtended angle
0 of curved beam is taken to be 30°and the length of beam / is 200 cm. Here, the buckling loads of
simply supported and clamped curved beams obtained from 20 Hermitian curved beam element
are 22.29 and 141.58 N, respectively. The values of 11.145 and 70.79 N are adopted as initial forces
for simply supported and clamped beams, respectively, which are the half of buckling loads of two
curved beams. The lowest 10 spatially coupled natural frequencies of simply supported, clamped
and cantilevered curved beams are presented in Tables 2-4, respectively. Also the present
solutions are compared with the FE solutions obtained from various number of Hermitian curved
beam elements. Particularly the results by 300 shell elements using the nine-noded shell
elements(S9RS) of ABAQUS which is the commercial FE analysis program are together presented
for a clamped and cantilevered curved beams without initial forces. From Tables 24, it can be
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X3
X3
'\ o
——»
10 ecm
—»f«—0.5 cm
je——»]
(a) (b) 5cm

Fig. 5. Simply supported curved beam with mono-symmetric cross-section. (a) Simply supported curved beam. (b)
Mono-symmetric cross-section. Material and section properties: 4 = 12.5¢cm?, E = 73,000 N/cm?, G = 28,000 N /cm?,
p = 0.00785N/cm?, J = 1.0417cm®, I, = 133.3854cm?, I3 = 67.9167 cm*, I = 5682.1302cm®, 143 = —585.1282cm>,
1222 =—100 cm5, 1233 = —41.6667 cm5, I¢(/,2 = 7465.7298 cm7, 1¢23 = —282.0513cm6.

Table 1
In-plane natural frequencies of simply supported beam with mono-symmetric section, >
[ (cm) 0o (deg) Mode This study Analytic solution [41] Finite element method [41]
1 294.30 294.30 294.30
2 1437.4 1437.4 1437.4
30 3 7131.4 7131.4 7131.9
4 9350.1 9350.1 9350.1
5 21217 21217 21221
100
1 1105.1 1105.1 1105.1
2 1800.3 1800.3 1800.4
90 3 6890.8 6890.8 6891.3
4 10586 10586 10586
5 21038 21038 21043
1 5.8260 5.8260 5.8261
2 12.256 12.256 12.256
30 3 32.501 32.501 32.503
4 94.879 94.879 94.899
5 232.02 232.02 232.14
400
1 4.4706 4.4706 4.4707
2 24.049 24.049 24.050
30 3 88.832 88.832 88.852
4 126.16 126.16 126.17
5 235.29 235.29 235.40

found that the present study yields exact solutions using only a single element, while at least 10
curved beam elements are demanded for the reasonably well results in the higher vibrational
modes. As shown in Tables 3 and 4, the present solutions are in a good agreement with those of
‘ABAQUS’ shell element. Also it is noted from Tables 2 and 3 that the influence of initial
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X3
2 cm
8 cm
L » X2
i+ 0.5 cm
e
[—>
(a) (b) 4cm

Fig. 6. Non-symmetric cross-section and material and section properties. (a) Under uniform compression load. (b)
Cross-section. Material and section properties: 4 = 7.0cm?, E = 30,000 N/cm?, G = 11,500 N/cm?, J = 0.5833 cm*,
p =0.00785N/cm?, I, = 67.0476cm*, I3 = 8.4286cm?*, I3 = 9.1429cm?, Iy = 52.2449cm’, Iy3 = —20.0272cm’,
Dy = —17.4150cm’, 1333 = —13.3878cm?, [, = 272.5442cm®, Iy = 115.8095cm®, 143 = 30.4762cm’, Iym =
59.2109 cm®, 1403 = —107.1020 cm®, 433 = —63.1293cm®, Iyp = —67.1720cm’, Ipp3 = —388.7269 cm”.

compressive and tensile forces on the spatially coupled natural frequencies are predominant in the
first few modes.

4.3. Some parametric study of curved beams with non-symmetric cross-section

In our final example, the effect of initial axial force on the spatially coupled natural frequency
of curved beam with non-symmetric cross-section through the parametric study is investigated.
First, we consider simply supported and clamped curved beams subjected to initial axial force.
The same geometric and material data of curved beams as the one used in Section 4.2 are adopted
(see Fig. 6) and the subtended angle is 90°and the length of beam is 100, 200, 300 and 400 cm.
When the value of initial compressive and tensile force is 0.5 N, the lowest 10 spatially coupled
natural frequencies of the simply supported and clamped curved beams by this study are
presented in Tables 5 and 6, respectively.

Now the initial compressive forces are adopted as the value of the half of buckling load for two
types of beams. Figs. 7 and 8 show the relative difference of the first two natural frequencies for
simply supported and clamped beams subjected to initial compressive forces versus various
subtended angle (see Fig. 7) and length of beam (see Fig. 8). In this example, the relative difference
is defined by (w?— ®?)/w? x 100, where o, denotes the frequency including the initial
compressive force. It is interesting to observe from Figs. 7 and 8 that the effect of compressive
forces on the fundamental frequency of simply supported beam is the same as the ratio 50% of
these forces to buckling loads. However, those effects for clamped beams are a little smaller than
those of simply supported beams and also, those effect on the second frequency of simply
supported beams are less than those of clamped beams.

5. Conclusion

The higher-order simultaneous ordinary differential equations of non-symmetric thinwalled
curved beams subjected to initial axial force are first derived and transformed into the first order
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Table 2
Spatially coupled natural frequencies of simply supported beam with non-symmetric section, w?, (6 = 30,
P, =22290N)

[ (cm) Mode This study Finite element method
4 6 8 10 20
1 [0.049783] [0.049889] [0.049804] [0.049790] [0.049786] [0.049783]
0.099583 0.099689 0.099604 0.099590 0.099586 0.099583
(0.14938) (0.14949) (0.14940) (0.14939) (0.14939) (0.14938)
2 [1.9801] [1.9999] [1.9842] [1.9815] [1.9807] [1.9802]
2.1784 2.1982 2.1825 2.1797 2.1789 2.1784
(2.3766) (2.3965) (2.3807) (2.3779) (2.3772) (2.3767)
3 [8.4053] [8.4079] [8.4060] [8.4056] [8.4055] [8.4054]
8.4571 8.4593 8.4577 8.4574 8.4573 8.4573
(8.5085) (8.5104) (8.5090) (8.5087) (8.5087) (8.5086)
4 [10.197] [10.554] [10.274] [10.222] [10.207] [10.198]
10.638 10.997 10.715 10.663 10.648 10.639
(11.079) (11.440) (11.157) (11.105) (11.090) (11.080)
5 [13.138] [13.197] [13.150] [13.141] [13.139] [13.138]
13.335 13.394 13.347 13.339 13.336 13.335
(13.532) (13.591) (13.544) (13.536) (13.534) (13.532)
200
6 [22.544] [22.620] [22.562] [22.550] [22.546] [22.544]
22.610 22.684 22.627 22.616 22.612 22.610
(22.675) (22.748) (22.693) (22.681) (22.678) (22.676)
7 [29.730] [35.424] [30.331] [29.930] [29.814] [29.736]
30.518 36.222 31.121 30.718 30.602 30.524
(31.3006) (37.020) (31.910) (31.5006) (31.390) (31.312)
8 [45.068] [45.954] [45.259] [45.130] [45.094] [45.070]
45.505 46.395 45.697 45.568 45.532 45.508
(45.944) (46.835) (46.136) (46.006) (45.970) (45.946)
9 [58.199] [58.546] [58.270] [58.222] [58.209] [58.200]
58.394 58.742 58.465 58.417 58.404 58.395
(58.590) (58.937) (58.660) (58.612) (58.599) (58.590)
10 [66.441] [81.160] [69.372] [67.454] [66.871] [66.470]
67.670 82.415 70.607 68.684 68.100 67.699
(68.899) (83.671) (71.842) (69.914) (69.329) (68.928)

Note: [ ] natural frequency with an initial compressive force 11.145N.
() natural frequency with an initial tensile force 11.145N.
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Table 3
Spatially coupled natural frequencies of clamped beam with non-symmetric section, w? (6 = 30°, P, = 141.58 N)
[ (cm) Mode This study Finite element method ABAQUS
4 6 8 10 20 [43]
1 [0.42724] [0.43232] [0.42836] [0.42761] [0.42740] [0.42725] —
0.83382 0.83643 0.83437 0.83400 0.83390 0.83383 0.8479
(1.2271) (1.2300) (1.2277) (1.2273) (1.2272) (1.2271) —
2 [3.9076] [4.0010] [3.9292] [3.9148] [3.9106] [3.9078] —
5.3734 5.4752 5.3961 5.3810 5.3766 5.3737 5.4097
(6.8218) (6.9425) (6.8487) (6.8310) (6.8258) (6.8222) —
3 [10.380] [10.440] [10.397] [10.386] [10.383] [10.380] —
10.770 10.834 10.788 10.777 10.773 10.770 10.605
(11.150) (11.220) (11.171) (11.158) (11.154) (11.150) —
4 [15.090] [15.735] [15.313] [15.165] [15.122] [15.093] —
18.119 18.917 18.360 18.200 18.153 18.122 18.235
(21.115) (20.069) (21.381) (21.204) (21.153) (21.117) —
5 [20.638] [21.118] [20.749] [20.677] [20.655] [20.640] —
22.086 22.591 22.205 22.128 22.104 22.087 21.878
(23.526) (24.062) (23.656) (23.573) (23.547) (23.528) —
200
6 [30.714] [31.049] [30.819] [30.751] [30.730] [30.715] —
31.304 31.600 31.398 31.337 31.319 31.305 30.386
(31.909) (32.174) (31.993) (31.939) (31.922) (31.910) —
7 [39.806] [52.901] [41.124] [40.273] [40.004] [39.820] —
45.192 58.798 46.592 45.680 45.398 45.206 45.524
(50.573) (64.697) (52.067) (51.088) (50.789) (50.588) —
8 [65.242] [68.008] [66.085] [65.524] [65.361] [65.250] —
68.345 71.255 69.207 68.633 68.467 68.354 67.401
(71.449) (74.513) (72.335) (71.745) (71.574) (71.458) —
9 [84.744] [125.19] [88.275] [86.739] [85.608] [84.802] —
93.019 126.64 96.891 95.086 93.908 93.078 93.276
(101.30) (128.10) (105.52) (103.45) (102.22) (101.36) —
10 [122.34] [135.01] [123.13] [122.61] [122.46] [122.35] —
123.90 144.69 124.61 124.14 124.00 123.90 107.62
(125.42) (154.37) (126.09) (125.64) (125.51) (125.42) —

Note: [ ] natural frequency with an initial compressive force 70.79 N.
() natural frequency with an initial tensile force 70.79 N.
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Table 4
Spatially coupled natural frequencies of cantilevered beam with non-symmetric section, w? (0y = 30°)
[ (cm) Mode This study Finite element method ABAQUS
4 6 8 10 20 [43]
1 0.0212 0.0214 0.0213 0.0212 0.0212 0.0212 0.0213
2 0.2815 0.2819 0.2816 0.2816 0.2815 0.2815 0.2791
3 0.3747 0.3753 0.3748 0.3747 0.3747 0.3747 0.3724
4 2.2663 2.2772 2.2689 2.2673 2.2669 2.2666 2.2487
5 5.0552 5.1030 5.0674 5.0596 5.0572 5.0554 5.0275
200
6 7.4325 7.5507 7.4598 7.4417 7.4364 7.4328 7.3378
7 19.490 20.021 19.714 19.569 19.524 19.493 19.518
8 20.510 20.742 20.564 20.530 20.519 20.511 19.935
9 28.177 28.771 28.362 28.239 28.202 28.177 27.449
10 49.050 60.347 50.466 49.585 49.283 49.067 49.227
Table 5
Spatially coupled natural frequencies of simply supported beam with various length, w? (0y = 90°)
Mode Length of beam, / (cm)
100 200 300 400
P, = 14587N P, =3.1907N P, = 1.4010N P, =0.79124N
1 [0.24561] [0.011983] [0.0017912] [0.00032623]
0.25432 0.014210 0.0027853 0.00088631
(0.26304) (0.016437) (0.0037794) (0.0014464)
2 [11.363] [0.83036] [0.17593] [0.057379]
11.396 0.83912 0.17987 0.059609
(11.429) (0.84788) (0.18382) (0.061839)
3 [74.226] [5.9088] [1.3375] [0.45718]
74.299 5.9283 1.3463 0.46217
(74.372) (5.9477) (1.3551) (0.46717)
4 [168.05] [15.231] [3.5368] [1.2114]
168.08 15.238 3.5398 1.2131
(168.11) (15.246) (3.5429) (1.2148)
5 [188.19] [20.523] [4.8301] [1.7051]
188.20 20.557 4.8457 1.7140
(188.21) (20.592) (4.8612) (1.7228)
6 [252.88] [36.718] [12.156] [4.3993]
253.01 36.721 12.181 4.4131

(253.14) (36.723) (12.205) (4.4269)
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Table 5 (continued)

867

Mode Length of beam, / (cm)
100 200 300 400
P, =14587N P, =3.1907N P, =14010N P, =0.79124N
7 [557.52] [50.578] [14.236] [5.3894]
557.58 50.630 14.243 5.3936
(557.64) (50.682) (14.251) (5.3978)
8 [633.89] [55.064] [15.152] [8.1551]
634.08 55.083 15.153 8.1556
(634.27) (55.102) (15.155) (8.1562)
9 [858.33] [90.364] [25.002] [9.1775]
858.37 90.373 25.037 9.1973
(858.40) (90.382) (25.072) (9.2171)
10 [892.94] [104.10] [29.000] [13.924]
892.98 104.18 29.004 13.927
(893.03) (104.25) (29.008) (13.929)
Note: [ ] natural frequency with an initial compressive force 0.5 N.
() natural frequency with an initial tensile force 0.5 N.
Table 6
Spatially coupled natural frequencies of clamped beam with various length, w? (0 = 90°)
Mode Length of beam, / (cm)
100 200 300 400
P, =39526N P, =103.04N P, =46.733N P, =26611N
1 [10.525] [0.71894] [0.14310] [0.044931]
10.538 0.72218 0.14455 0.045745
(10.550) (0.72542) (0.14600) (0.046557)
2 [47.167] [3.9805] [0.87998] [0.29309]
47.207 3.9913 0.88486 0.29585
(47.247) (4.0020) (0.88974) (0.29861)
3 [157.20] [13.546] [3.2201] [1.1291]
157.28 13.567 3.2299 1.1347
(157.36) (13.589) (3.2398) (1.1403)
4 [247.40] [31.817] [8.2442] [2.9626]
247.41 31.826 8.2514 2.9685
(247.42) (31.835) (8.2585) (2.9743)
5 [326.71] [35.173] [8.5854] [3.1760]
326.77 35.210 8.5987 3.1818
(326.79) (35.247) (8.6122) (3.1876)
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Table 6 (continued)

Mode Length of beam, / (cm)
100 200 300 400
P.. =39526N P, =103.04N P.. =46733N P, =26611N
6 [426.49] [41.841] [16.057] [6.6426]
426.63 41.844 16.060 6.6566
(426.77) (41.846) (16.063) (6.6706)
7 [700.04] [70.917] [18.098] [7.9268]
700.08 70.955 18.120 79314
(700.12) (70.992) (18.141) (7.9360)
8 [960.12] [80.545] [20.554] [8.6875]
960.32 80.583 20.564 8.6887
(960.53) (80.620) (20.575) (8.6899)
9 [1200.0] [138.02] [33.580] [12.550]
1200.0 138.07 33.613 12.570
(1200.1) (138.12) (33.645) (12.590)
10 [1724.7] [148.74] [38.897] [16.476]
1724.7 148.78 38.906 16.480
(1724.7) (148.82) (38.915) (16.484)

Note: [ ] natural frequency with an initial compressive force 0.5 N.
() natural frequency with an initial tensile force 0.5 N.
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Fig. 7. Relative difference of natural frequencies versus length of beam due to an initial compressive force (0 = 90°).
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1¢ mode (S-S)

————— 24 mode (S-9)
—O—— 19 mode (C-C)
54 —8— 2Ymode(C-C)
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-55 I I I I I I I
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Subtended angle, 6,

Fig. 8. Relative difference of natural frequencies versus subtended angle due to an initial compressive force
(I =300cm).

differential equations. And then exact solutions of displacement parameters are obtained using a
generalized linear eigenproblem having complex eigenvalues. Finally, dynamic element stiffness
matrix of the harmonically vibrating curved beams subjected to axial force is determined using
member force—displacement relationships. For spatially coupled natural frequencies of thin-
walled curved beams under initial axial force, it is demonstrated that numerical results by the
present method are in a good agreement with those by thin-walled beam elements and ABAQUS’s
shell element.

Consequently it is believed that the present procedure is general enough to provide a systematic
tool for exact solutions of simultaneous ordinary differential equations of the higher order with
constant coefficients.
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Appendix A

A.1. The elastic strain energy including the effect of an initial axial force
U.\* - U\> s AN Uy
EA( U - EL (U +— El;( U —— Els( 0"+
(Ux+ R> + 2<UZ+R2> + 3(Uy R) + ¢( + R>
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A.2. The kinetic energy
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in which E and G = the Young’s modulus and shear modulus, J and p = torsional constant and
density. [I2,13,123,1220,1223,1233,1¢, 129, 139, 1 922, 1423, 1 p42> = sectional constants of which the

detailed expressions may be referred to Ref. [41]. The superscript ‘prime’ denotes the derivative
with respect to x;.

Appendix B

B.1. Equations of motion of thin-walled curved beams
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B.2. Boundary conditions of thin-walled curved beams

5UL0) = dUP;  SUL(I) = dUY, (B.2a.b)

dU(0) = U, SU (1) = oY, (B.2¢.d)

SU(0) = U, SU(I) = 5UY, (B.2e.f)
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B.3. Force—deformation relations
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Appendix C

C.1. The components of matrix A
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